Optical Interconnection Design Innovator

100GBASE-SR4 CFP4 Optical Transceiver GF4-M101-SR4C

Features

- · Hot pluggable CFP4 MSA form factor
- Supports 103.1Gb/s to 112.2Gb/s aggregate bit rates
- Compliant to IEEE 802.3bm 100GBASE-SR4
- Power class 2 (<2.5W max)
- Up to70m on OM3 and 100m OM4 MMF transmission
- Up to 28Gb/s data rate per channel
- Operating case temperature: 0~70°C
- 4x28G Electrical Serial Interface (CEI-28G-VSR)
- MDIO management interface with digital diagnostic monitoring (Optional)
- Maximum power consumption <2.5W
- Utilizes a standard 12/8 lane optical fiber with MPO connector
- RoHS 6 compliant(lead free)
- 4×28Gb/s 850mm VCSEL-based transmitter

Applications

- 100GBASE-SR4 Ethernet
- OTN OTU4
- 128G Fiber Channel

Optical Interconnection Design Innovator

Description

The Gigalight' s100Gb/s transceiver module for optical communication applications compliant to 100GBASE-SR4 of the IEEE P802.3bm standard. The module converts 4 input channels of 25Gb/s electrical data to 4 channels of VCSEL optical signals over 4 multimode fibers for 100Gb/s optical transmission. Reversely, on the receiver side, the module receives 4 channels of VCSEL optical signals over 4 multimode fibers and then converts them to 4 output channels of electrical data.

The high speed VCSEL transmitters and high sensitivity PIN receivers provide superior performance for 100Gigabit Ethernet applications up to 100m links over OM4 multimode fibers and compliant to optical interface with IEEE802.3bm Clause 95 100GBASE-SR4 requirements.

This product contains an MTP/MPO optical connector for the optical interface and a 56-pin connector for the electrical interface. Figure 1 shows the functional block diagram of this product.

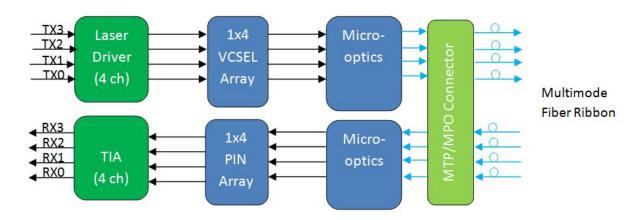
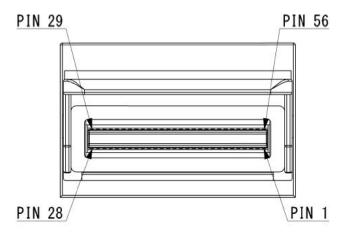


Figure 1. 100G CFP4 SR4 Transceiver Block Diagram

The CFP4 module supports the MDIO interface specified in IEEE802.3bm Clause 45. It supportsalarm, control and monitor functions via hardware pins and via an MDIO bus. Upon module initialization, these functions are available. CFP4 MDIO electrical interface consists of 6 wires including 2 wires of MDC and MDIO, as well as 3 Port Address wires, and the Global Alarm wire. The CFP4 uses pins in the electrical connector to instantiate the MDIO interface as listed in Table 1. MDIO Interface Pins.

Table 1. MDIO Interface Pins



Optical Interconnection Design Innovator

PIN	Symbol	Description	1/0	Logic	"H"	"L"
13	GLB_ALRMn	Global Alarm	0	3.3V LVCMOS	ОК	Alarm
18	MDIO	Management Data Input Output Bi-Directional Data	I/O	1.2V LVCMOS		
17	MDC	MDIO Clock	ı	1.2V LVCMOS		
19	PRTADR0	MDIO port address bit 0	I	1.2V LVCMOS	MDIO	
20	PRTADR1	MDIO port address bit 1	I	1.2V LVCMOS	per MDIO	
21	PRTADR2	MDIO port address bit 2	I	1.2V LVCMOS	document	

Pin Assignment and Description

The CFP4electrical connector has 56 pins, which are arranged in top and bottom rows. The pin orientation is shown in Figure 2 and the pin map is shown in Table 2. The detailed description of the bottom side pins from pin 1 through pin 28 is shown in Table 3 while the description of the top side pins is shown in Table 4.

Figure 2. CFP4 Connector Pin Map Orientation

Optical Interconnection Design Innovator

Table 2. Pin Map

	CFP4
	Bottom
1	3.3V_GND
2	3.3V_GND
3	3.3V
4	3.3V
5	3.3V
6	3.3V
7	3.3V_GND
8	3.3V_GND
9	VND_IO_A
10	VND_IO_B
11	TX_DIS (PRG_CNTL1)
12	RX_LOS (PRG_ALRM1)
13	GLB_ALRMn
14	MOD_LOPWR
15	MOD_ABS
16	MOD_RSTn
17	MDC
18	MDIO
19	PRTADR0
20	PRTADR1
21	PRTADR2
22	VND_IO_C
23	VND_IO_D
24	VND_IO_E
25	GND
26	(MCLKn)
27	(MCLKp)
28	GND

	CFP4
	Тор
56	GND
55	TX3n
54	TX3p GND
53	GND
52	TX2n
51	TX2p
50	GND
49	TX1n
48	TX1p
47	GND
46	TX0n
45	TX0p
44	GND
43	(REFCLKn)
42	(REFCLKp)
41	GND
40	RX3n
39	RX3p
38	GND
37	RX2n
36	RX2p
35	GND
34	RX1n
33	RX1p
32	GND
31	RX0n
30	RX0p
29	GND

CFP4 Top ALT1 TX0n TX0p GND TX1n TX1p TX2n TX2p TX3n TX3p GND (REFCLKn) (REFCLKp) RX3p RX3n RX2p RX2n GND RX1p RX1n RX0p RX0n GND

REFCLK (Optional)

MCLK = TX_MCLK +
RX_MCLK
(Optional)

Table 3. Definition of the Bottom Side Pins from Pin 1 through Pin 28

PIN	Name	I/O	Logic	Description
1	2 2V CND			3.3V Module Supply Voltage Return Ground, can
,	3.3V_GND			be separated or tied together with Signal Ground
2	3.3V_GND			GND
3	3.3V			3.3V Module Supply Voltage
4	3.3V			3.3V Module Supply Voltage
5	3.3V			3.3V Module Supply Voltage
6	3.3V			3.3V Module Supply Voltage
7	3.3V_GND			GND
8	3.3V_GND			GND
9	VIND_IO_A	I/O		Module Vendor I/O A. Do Not Connect
10	VIND_IO_B	I/O		Module Vendor I/O B. Do Not Connect

Optical Interconnection Design Innovator

11	TX_DIS (PRG_CNT L1)	I	LVCMOS w/PUR	Transmitter Disable for all lanes. "1" or NC: Transmitter disabled; "0": transmitter enabled.(Optionally configurable as Programmable Control1 after Reset)			
12	RX_LOS (PRG_ALR M1)	0	LVCMOS w/PUR	Receiver Loss of Optical Signal. "1": low optical signal; "0":normal condition (Optionally configurable as Programmable Alarm1 after Reset)			
13	GLB_ALRM	0	LVCMOS	Global Alarm. "0":alarm condition in any MDIO Alarm register; "1": no alarm condition, Open Drain, Pull up Resistor on Host			
14	MOD_LOP WR	I	LVCMOS w/PUR	Module Low Power Mode. "1" or NC: module in low power (safe) mode; "0":power-on enabled			
15	MOD_ABS	0	GND	Module Absent. "1" or NC: module absent; "0": module present, Pull up resistor on Host			
16	MOD_RST	I	LVCMOS w/PDR	Module Reset. "0": resets the module; "1" or NO module enabled, Pull down Resistor in Module			
17	MDC	I	1.2V CMOS	Management Data Clock (electrical specs as per IEEE Std 802.3-2012)			
18	MDIO	I/O	1.2V CMOS	Management Data I/O bi-directional data(electrical specs as per IEEE Std 802.3ae-2008 and ba-2010)			
19	PRTADR0	I	1.2V CMOS	MDIO Physical Port address bit 0			
20	PRTADR1	I	1.2V CMOS	MDIO Physical Port address bit 1			
21	PRTADR2	I	1.2V CMOS	MDIO Physical Port address bit 2			
22	VND_IO_C	I/O		Module Vendor I/O C. Do Not Connect			
23	VND_IO_D	I/O		Module Vendor I/O D. Do Not Connect			
24	VND_IO_E	I/O		Module Vendor I/O E. Do Not Connect			
25	GND			GND			
26	(MCLKn)	0	CML	For optical waveform testing. Not for normal use			
27	(MCLKp)	0	CML	For optical waveform testing. Not for normal use			
28	GND			GND			

Table 4. Definition of Top Side Pins

PIN	Name	PIN	Name
29	GND	43	(REFCLKp)
30	RX0p	44	GND
31	RX0n	45	TX0p
32	GND	46	TX0n
33	RX1p	47	GND
34	RX1n	48	TX1p
35	GND	49	TX1n
36	RX2p	50	GND
37	RX2n	51	TX2p
38	GND	52	TX2n
39	RX3p	53	GND
40	RX3n	54	TX3p
41	GND	55	TX3n
42	(REFCLKn)	56	GND

Optical Interface Lanes and Assignment

Figure 3 shows the orientation of the multi-mode fiber facets of the optical connector. Table 5 provides the lane assignment.

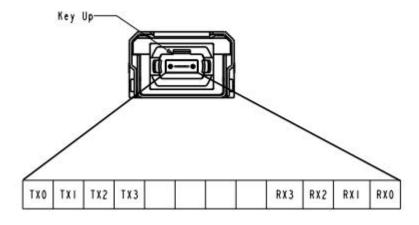


Figure 3.Outside View of the CFP4 Module MPO Receptacle

Optical Interconnection Design Innovator

Table5: Lane Assignment

Fiber	Lane
#	Assignment
1	RX0
2	RX1
3	RX2
4	RX3
5,6,7,8	Not used
9	TX3
10	TX2
11	TX1
12	TX0

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	Ts	-40	85	degC	
Relative Humidity (non-condensation)	RH		85	%	
Operating Case Temperature	T _{OP}	0	70	degC	
Supply Voltage	Vcc	-0.5	3.6	V	
Voltage on LVTTL Input	Vilvttl	-0.5	VCC3+0.3	V	
LVTTL Output Current	lolvttl		15	mA	
Voltage on Open Collector Output	Voco	0	6	V	
Damage Threshold, each Lane	TH _d	3.4		dBm	1

Notes:

1. PIN receiver.

Recommended Operating Conditions and Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	T _{OP}	0		70	degC	

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

Power Supply Voltage	V _{cc}	3.135	3.3	3.465	V	
Data Rate, each Lane			25.78125		Gbps	1
Data Rate, each Lane			27.9525		Gbps	2
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
						DC-
Power Supply Noise				2	%	1MHz
Tower Supply Noise	Vrip					1-
	VIIP			3	%	10MHz
Link Distance (OM3 MMF)	D1			70	m	
Link Distance (OM4 MMF)	D2			100	m	

Notes:

- 1. 100GBASE-SR4.
- 2. OUT4 with FEC.

Optical Interconnection Design Innovator

Electrical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Power Consumption				2.5	W	
Supply Current	lcc			800	mA	
Low Power Mode Power				1	w	
Dissipation				1	VV	
	Tra	nsmitter	(each Lane)		
Single-ended Input						Referred to TP1
Voltage Tolerance (Note		-0.3		4.0	V	signal common
1)						signal common
AC Common Mode Input		15			mV	RMS
Voltage Tolerance		13			IIIV	KIVIS
Differential Input Voltage		50			mVp	LOSA
Swing Threshold		30			р	Threshold
Differential Input Voltage	Vinna	190		700	mVp	
Swing	Vin,pp	190		700	р	
Differential Input	Zin	90	100	110	Ohm	
Impedance	ZIN	90	100	110	Onin	
	R	eceiver (each Lane)			
Single-ended Output		-0.3		4.0	V	Referred to
Voltage		-0.3		4.0	V	signal common
AC Common Mode				7.5		RMS
Output Voltage				7.5	mV	KIVIS
Differential Output	\/ata.a	300		050	mVp	
Voltage Swing	Vout,pp	300		850	р	
Differential Output	7	00	100	110	01	
Impedance	Zout	90	100	110	Ohm	
Termination Mismatch at					0/	
1MHz				5	%	

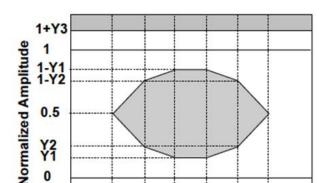
Notes:

1. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

Optical Interconnection Design Innovator

www.gigalight.com

Optical Characteristics


Parameter	Symbol	Min	Typica I	Max	Units	Notes
	Trans	mitter				
Center Wavelength	λ _C	840	850	860	nm	
RMS Spectral Width	$\Delta \lambda_{rms}$			0.6	nm	
Average Launch Power, each Lane	P _{AVG}	-8.4		2.4	dBm	
Optical Modulation Amplitude (OMA), each Lane	P _{OMA}	-6.4		3.0	dBm	1
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			4.0	dB	
Launch Power in OMA minus TDEC, each Lane		-7.3			dBm	
Transmitter and Dispersion Eye Closure (TDEC), each Lane				4.3	dB	
Extinction Ratio	ER	2.0			dB	
Optical Return Loss Tolerance	TOL			12	dB	
Encircled Flux		≥86% at 19um ≤ 30% at 4.5um				
Transmitter Eye Mask Definition $\{X1, X2, X3, Y1, Y2, Y3\}, 5 \times 10^{-5}$ hits/sample		{0.3,0.38	{0.3,0.38,0.45,0.35,0.41,0.5}			2
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
	Rec	eiver				
Center Wavelength	λ _C	840	850	860	nm	
Damage Threshold, each Lane	TH _d	3.4			dBm	3
Average Receive Power, each Lane		-10.3		2.4	dBm	
Receiver Reflectance	R _R			-12	dB	

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com Optical Interconnection Design Innov					ovator	
Receive Power (OMA), each Lane				3.0	dBm	
Stressed Receiver Sensitivity (OMA), each Lane				-5.2	dBm	4
LOS Assert	LOSA	-30			dBm	
LOS Deassert	LOSD			-12	dBm	
LOS Hysteresis	LOSH	0.5	2		dB	
Conditions of S	Stress Recei	ver Sensit	ivity Test	(Note 5):		
Stressed Eye Closure (SEC), Lane under Test			4.3		dB	
Stressed Eye J2 Jitter, Lane under Test			0.39		UI	
Stressed Eye J4 Jitter, Lane under Test				0.53	UI	
OMA of each Aggressor Lane			3		dBm	
Stressed receiver eye mask definition {X1, X2, X3, Y1, Y2, Y3}		{0.28,0.5,0.5,0.33,0.33,0.4}				

Notes:

- 1. Even if the TDP < 0.9 dB, the OMA min must exceed the minimum value specified here.
- 2. See Figure 5 below.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Measured with conformance test signal at receiver input for BER = $1x10^{-12}$.
- 5. Stressed eye closure and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Optical Interconnection Design Innovator

Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8436.

Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-0.15	0.15	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_Ibias_Ch	-10%	10%	mA	Ch1~Ch4
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Optical Interconnection Design Innovator

Mechanical Dimensions

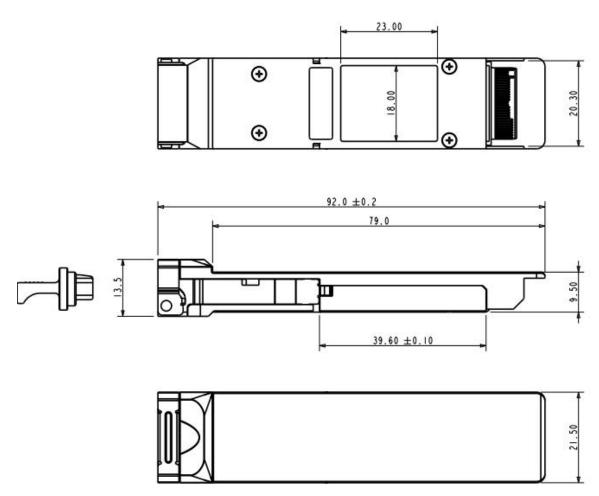


Figure 6.Mechanical Outline

ESD

This transceiver is specified as ESD threshold 2kV for all electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Optical Interconnection Design Innovator

Part Number Ordering Information

GF4-M101-SR4C	CFP4-SR4 100m optical transceiver with full real-time digital
	diagnostic monitoring and pull tab

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: sales@gigalight.com.cn

Web:http://www.gigalight.com