

200G QSFP-DD LR8 Optical Transceiver Module

GQD-SPO201-L28C

Features

- 8 channels full-duplex transceiver modules
- Transmission data rate up to 26Gbps per channel
- 8 x 26Gb/s DFB-based LAN-WDM Cooling transmitter
- 8 channels PIN ROSA
- Internal CDR circuits on both receiver and transmitter channels
- Support CDR bypass
- Low power consumption <7.5W
- Hot Pluggable QSFP DD form factor and Compliant with CMIS
- Up to 20km reach for G.652 SMF
- Duplex LC receptacles
- Built-in digital diagnostic functions
- Operating case temperature 0°C to +70°C
- 3.3V power supply voltage
- RoHS 6 compliant (lead free)

Applications

200G LR8 Ethernet

Description

The Gigalight Technologies GQD-SPO201-L28C is an Eight-Channel, Pluggable, Fiber-Optic QSFP DD LR8 for 200G Ethernet applications. This transceiver is a high performance module for data communication and interconnect applications. It integrates eight data lanes in each direction with 206.25Gbps bandwidth. Each lane can operate at 25.78125Gbps up to 20km over G.652 SMF. These modules are designed to operate over single-mode fiber systems using 8 LAN-WDM wavelengths. The electrical interface uses a 76 contact edge type connector. The optical interface uses duplex LC connector. This module incorporates Gigalight Technologies proven circuit and Optical technology to provide reliable long life, high performance, and consistent service.

200G QSFP DD LR8 CIRCUIT STRUCTURE

Figure1. Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.3	3.6	V
Input Voltage	Vin	-0.3	Vcc+0.3	V
Storage Temperature	Tst	-20	85	°C
Case Operating Temperature	Тор	0	70	°C
Humidity(non-condensing)	Rh	5	95	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	V_{cc}	3.13	3.3	3.47	V
OperatingCase Temperature	Tc	0		70	°C
Data Rate Per Lane	fd		25.78125		Gbps
Humidity	Rh	5		85	%
Power Dissipation	Pm			7.5	W
Fiber Bend Radius	R _b	0.002		20	km

Optical Interconnection Design Innovator

Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Differential Input Impedance	Zin	90	100	110	ohm
Differential Output Impedance	Zout	90	100	110	ohm
Differential Input Voltage Amplitude ¹	ΔV_{in}	190		700	mVp-p
Differential Output Voltage Amplitude ²	ΔV_{out}	300		850	mVp-p
Input Logic Level High	V _{IH}	2.0		V _{cc}	V
Input Logic Level Low	V _{IL}	0		0.8	V
Output Logic Level High	V _{OH}	V _{cc} -0.5		V _{cc}	V
Output Logic Level Low	Vol	0		0.4	V

Note:

- 1. Differential input voltage amplitude is measured between TxnP and TxnN.
- 2. Differential output voltage amplitude is measured between RxnP and RxnN.

Optical Characteristics

Table 3 - Optical Characteristics

100GBASE-LR4						
Parameter	Symbol	Min	Typical	Max	Unit	Notes
	LO	1272.55	1273.54	1274.54	nm	
	L1	1276.89	1277.89	1278.89	nm	
	L2	1281.25	1282.26	1283.27	nm	
Lana Wayalangth	L3	1285.65	1286.66	1287.68	nm	
	L4	1294.53	1295.56	1296.59	nm	
	L5	1299.02	1300.05	1301.09	nm	
	L6	1303.54	1304.58	1305.63	nm	
	L7	1308.09	1309.14	1310.19	nm	
Transmitter			er			
SMSR	SMSR	30			dB	
Total Average Launch Power	Pτ			10.5	dBm	
Average Launch Power, each Lane	P _{AVG}	-4.3		4.5	dBm	
OMA, each Lane	Рома	-1.3		4.5	dBm	1
Difference in Launch Power	Ptx,diff			5	dB	

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com Optical Interconnection Design Innovator Launch Power in OMA -2.3 dBm TDP 2.2 dB TDP, each Lane 4 Extinction Ratio ER dB dB/H RIN₂₀OMA RIN -130 **Optical Return Loss** TOL 20 dB **Transmitter Reflectance** R⊤ -12 dB Eye Mask coordinates: $\{0.25, 0.4, 0.45, 0.25, 0.28, 0.4\}$ 2 X1, X2, X3, Y1, Y2, Y3 Average Launch Power OFF Poff -30 dBm Receiver Damage Threshold, 3 5.5 THd dBm each Lane Total Average Receive 10.5 dBm Average Receive Power, -10.6 4.5 dBm each Lane Receive Power (OMA), 4.5 dBm each Lane Receiver Sensitivity (OMA), SEN dBm -8.6 each Lane Stressed Receiver Sensitivity (OMA), 4 -6.8 dBm each Lane **Difference in Receive Power** between any Two Lanes Prx,diff 5.5 dB (OMA) LOS Assert LOSA -18 dBm LOS Deassert -15 LOSD dBm LOS Hysteresis LOSH 0.5 dB Receiver Electrical 3 dB upper Cutoff Frequency, Fc 31 GHz each Lane Conditions of Stress Receiver Sensitivity Test (Note 5)

tion Decign Inno

www.gigalight.com			Optical Inter	connectio	n Design Innovator
Vertical Eye Closure Penalty, each Lane	1	.8		dB	5
Stressed Eye J2 Jitter, each Lane	С	.3		UI	
Stressed Eye J9 Jitter, each Lane	0.	47		UI	

Note:

- 1. Even if the TDP < 1 dB, the OMA min must exceed the minimum value specified here.
- 2. See Figure 4 below.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Measured with conformance test signal at receiver input for BER = 1×10^{-12} .
- 5. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Pin Description

Optical Interconnection Design Innovator

Pad	Logic	Symbol	Description	Plug Sequence ⁴	Notes
1	20	GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	8
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	23
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	23
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	÷
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	2
9	LVTTL-I	ResetL	Module Reset	3B	÷
10		VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-0	Rx1n	Receiver Inverted Data Output	3B	
19	ler	GND	Ground	1B	1
20	5 c	GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	s
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	5.
23	2	GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	5
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	\$2
26	2) V	GND	Ground	1B	1
27	LVTTL-0	ModPrsL	Module Present	3B	57
28	LVTTL-0	IntL	Interrupt	3B	57
29	3 X	VccTx	+3.3V Power supply transmitter	2B	2
30	3	Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	LPMode	Low Power mode;	3B	8
32	3	GND	Ground	1B	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	2
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38	95	GND	Ground	1B	1

Optical Interconnection Design Innovator

Pad	Logic	Symbol	Description	Plug Sequence ⁴	Notes
39	2	GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	2 S
41	CML-I	Тхбр	Transmitter Non-Inverted Data Input	3A	1
42		GND Ground 1A 1			
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	4 CML-I Tx8p Transmitter Non-Inverted Data Input 3A				Q 2
45		GND Ground 1A 1			
46	Reserved For future use 3A 3				3
47		VS1	Module Vendor Specific 1 3A 3		
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	8 3
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	1
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A	
56	CML-O	Rx5n	Receiver Inverted Data Output	3A	Č. – –
57		GND	Ground	1A	1
5.8	14	GND	Ground	11	1
59	CML-0	Bx6n	Receiver Inverted Data Output	3A	
60	CML-0	Dyfn	Deceiver Non-Inverted Data Output	31	
61	0110 0	GND	Ground	11	1
62	CML-0	Dyßn	Receiver Inverted Data Output	31	-
63	CML-0	DyBn	Paceiver Non-Inverted Data Output	32	2 D
64	0.111 0	GND	Ground	11	1
65	-	NC	No Connect	32	3
66	3 3	Decertred	For future use	32	2
67		VecTv1	3 3V Dover Supply	22	2
69	-	Vec2	3 3V Dower Supply	23	2
69	LUTTL-T	ADDS	Drecision Time Drotocol (DTD) reference	31	3
			clock input	0.11	Ŭ
70		GND	Ground	12	1
71	CML-T	Ty7n	Transmitter Non-Inverted Data Input	31	-
72	CML-T	Tx7n	Transmitter Inverted Data Input	34	SZ
73		GND	Ground	12	1
74	CML-T	TyEn	Transmitter Non-Inverted Data Input	22	-
75	CML-T	Typn	Transmitter Inverted Data Input	32	
76	0112 2	CND	Ground	12	1
Note comm pote	1: QSFP- on withir ntial unl	DD uses co the QSFP- ess otherw plane.	offound (GND) for all signals and suppl DD module and all module voltages are refer vise noted. Connect these directly to the h	y (power). erenced to t lost board s	All are his ignal-
Note Requ	2: VccRa irements able 7	defined for VccRx. Vcc	Vccl, Vcc2, VccTx and VccTxl shall be app) or the host side of the Host Card Edge Conr Rx1, Vcc1, Vcc2, VccTx and VccTxl may be i	ied concurr ector are l nternally	ently. isted
conn rate	ected wit d for a m	hin the mo aximum cur	odule in any combination. The connector Vcc rrent of 1000 mA.	pins are e	ach
Note be t left an i	3: All V erminated unconned mpedance	Vendor Spec 1 with 50 C ted withir to GND tha	rific, Reserved, No Connect and ePPS (if no Ohms to ground on the host. Pad 65 (No Cor A the module. Vendor specific and Reserved At is greater than 10 kOhms and less than 1	ot used) pin (nect) shall (pads shall (00 pF.	s may be have
Note modu Cont	4: Plug le. The s act seque	Sequence is equence is nce A will	specifies the mating sequence of the host of 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for 1 make, then break contact with additional	onnector an pad locati QSFP-DD pad	d .ons) ls.
Sequ	ence 1A,1	B will the	en occur simultaneously, followed by 2A,2B,	followed by	3A,3B.

.3

Optical Interconnection Design Innovator Top side viewed from top 76 GND 75 TX5n

GND

RX5p

RX5n

GND

Additional

QSFP-DD Pads

54

55

56

57

GND

RX1p

RX1n

GND

Legacy **QSFP28** Pads 16

17

18

19

ModSelL Pin

The ModSelL is an input signal that must be pulled to Vcc in the QSFP-DD module. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP-DD modules on a single 2-wire interface bus. When ModSelL is "High", the module shall not respond to or acknowledge any 2-wire interface communication from the host. In order to avoid conflicts, the host system shall not attempt 2-wire interface communications within the ModSelL de-assert time after any QSFP-DD modules are deselected. Similarly, the host must wait at least for the period of the ModSelL assert time before communicating with the newly selected module. The assertion and de-asserting periods of different modules may overlap as long as the above timing requirements are met.

ResetL Pin

The ResetL signal shall be pulled to Vcc in the module. A low level on the ResetL signal for longer than the minimum pulse length (t_Reset_init) (See Table 13) initiates a complete module reset, returning all user module settings to their default state.

LPMode Pin

LPMode is an input signal. The LPMode signal shall be pulled up to Vcc in the QSFP-DD module (see Table 2). LPMode is used in the control of the module power mode. See CMIS Section 6.3.1.3.

ModPrsL Pin

ModPrsL must be pulled up to Vcc Host on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host connector.

IntL Pin

IntL is an output signal. The IntL signal is an open collector output and must be pulled to Vcc Host on the host board. When the IntL signal is asserted Low it indicates a change in module state, a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL signal is deasserted "High" after all set interrupt flags are read.

Power Supply Filtering

The host board should use the power supply filtering shown in Figure3.

Figure3. Host Board Power Supply Filtering

DIAGNOSTIC MONITORING INTERFACE

Digital diagnostics monitoring function is available on all Gigalight QSFP DD products. A 2-wire serial interfaceprovides user to contact with module.

This subsection defines the Memory Map for a CMIS Module used for serial ID, digital 3 monitoring and certain control functions. The interface is mandatory for all CMIS 4 devices. The interface has been designed largely after the QSFP memory map. The memory 5 map has been changed in order to accommodate 8 electrical lanes and limit the required 6 memory space. The single address approach is used as found in QSFP. Paging is used in 7 order to enable time critical interactions between host and module.

The structure of the memory is shown in Figure 5. The memory space is arranged into a 10 lower, single page, address space of 128 bytes and multiple upper address space pages. 11 This structure supports a flat 256 byte memory for passive copper cables and permits 12 timely access to addresses in the lower page, e.g. Flags and Monitors. Less time critical 13 entries, e.g. serial ID information and threshold settings, are available with the Page 14 Select function. The structure also provides address expansion by adding additional upper 15 pages as needed. Upper pages 00-02 all contain static,

non-volatile advertising 16 registers. Upper page 01 provides revision codes and advertising registers that indicate 17 the capabilities of the module. Upper page 02 provides thresholds for monitored 18 functions. Upper page 03 provides a user read/write space. The lower page and upper page 19 00 are required for passive copper cables and are always implemented. In addition, upper 20 pages 1, 2 and bank 0 pages 10h and 11h are required for active modules. See CMIS Document Table 40 for 21 details regarding the implementation of optional upper pages and the bank pages. Bank 22 pages are provided to provide the ability to support modules with more than 8 lanes. Bank 23 0 provides lane-specific registers for the lower 8 lanes. Each additional bank provides 24 support for an additional 8 lanes. Reserved bytes are for future use and shall not be 25 used and shall be set to 0. Other organizations shall contact the managing organization 26 or the editor of this document to request allocations of registers. The use of custom 27 bytes is not restricted and may be vendor defined. The use of registers defined as custom 28 may be subject to additional agreements between module users and vendors.

Figure4. QSFP DD Memory Map

Optical Interconnection Design Innovator

Mechanical Dimensions

Figure5. Mechanical Specifications

Regulatory Compliance

Gigalight GQD-SPO201-L28C transceivers are Class 1 Laser Products. They are certified per the following standards:

Feature	Standard
Laser Safety	IEC 60825-1:2014 (Third Edition)
Environmental protection	2011/65/EU
CE EMC	EN55032: 2015 EN55024: 2010+A1: 2015 EN61000-3-2:2014 EN61000-3-3:2013
FCC	FCC Part 15, Subpart B; ANSI C63.4-2014
Product Safety	EN/UL 60950-1, 2nd Edition, 2014-10-14

References

- 1. QSFP DD MAS Rev5.0
- 2. CMIS V4.0
- 3. OIF CEI-528G-VSR

CAUTION:

Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Ordering information

Part Number	Product Description
GQD-SPO201-L28C	200G QSFP-DD LR8, LWDM8, 20km, SMF, Dual LC

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: <u>sales@gigalight.com</u> Official Site: <u>www.gigalight.com</u>

Revision History

Revision	Date	Description
V0	Sep 14, 2020	Advance Release.