SFP28－DWDM 32G FC 10Km GSS－Dxx280－LRT

Features

\checkmark Hot－pluggable SFP28 form factor
\checkmark Supports $24.33 \mathrm{~Gb} / \mathrm{s} \& 25.78 \mathrm{~Gb} / \mathrm{s}$ aggregate bit rate
\checkmark Supports $28.05 \mathrm{~Gb} /$ s aggregate bit rate
\checkmark Transmitter：cooled 25Gb／s DWDM EML TOSA
\checkmark Compliant to ITU－T 694.1
\checkmark Receiver：25Gb／s APD ROSA
$\checkmark \quad$ Internal CDR circuits on both receiver and transmitter channels
$\checkmark \quad 1.8 \mathrm{~W}$ maximum power dissipation
\checkmark Maximum link length of 10 Km over SMF
$\checkmark \quad$ Duplex LC receptacle
\checkmark Operating case temperature range：-40 to $85^{\circ} \mathrm{C}$
\checkmark Single 3.3 V power supply
\checkmark RoHS 2.0 compliant（2011／65／EU，lead free）

Applications

$\checkmark \quad$ CPRI Option 10
$\checkmark \quad 25 \mathrm{G}$ Ethernet
$\checkmark \quad 32 \mathrm{GFC}$

Description

This product is a 32G FC SFP28 transceiver designed for optical communication compliant with 25GE and 32G FC standard．Its high performance cooled DWDM EML transmitter and high sensitivity APD receiver provide superior performance for 25GE and 32G FC application up to 10km（with FEC）Links．

The product is designed with SFP28 form factor，which is the optical／electrical connection according to the SFP＋ Multi－Source Agreement（MSA）

Figure 1．Module Block Diagram
The SFP28 is an Enhanced Small Form Factor Pluggable SFP＋transceiver，and can be contacted through I2C system．

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{cc}	-0.3	3.6	V
Input Voltage	V_{in}	-0.3	$\mathrm{~V}_{\mathrm{cc}}+0.3$	V
Storage Temperature	T_{s}	-40	85	${ }^{\circ} \mathrm{C}$
Case Operating Temperature	T_{c}	-40	85	${ }^{\circ} \mathrm{C}$
Humidity（non－condensing）	Rh	0	85	$\%$

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	V_{cc}	3.13	3.3	3.47	V

Gigalight
www.gigalight.com

www.gigalight.com	Optical Interconnection Design Innovator				
Operating Case Temperature	T_{c}	-40		85	${ }^{\circ} \mathrm{C}$
Data Rate Per Lane	fd		$24.33 / 25.78 /$ 28.05		$\mathrm{~Gb} / \mathrm{s}$
Humidity	Rh	0		85	$\%$
Power Dissipation	P_{m}			2	W
Fiber Bend Radius	R_{b}	3			cm

Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Differential Input Impedance	$\mathrm{Z}_{\text {in }}$	90	100	110	ohm
Differential Output Impedance	$\mathrm{Z}_{\text {out }}$	90	100	110	ohm
Differential Input Voltage Amplitude 1	$\Delta \mathrm{~V}_{\text {in }}$	300		1100	$\mathrm{mVp}-\mathrm{p}$
Differential Output Voltage Amplitude 2	$\Delta \mathrm{~V}_{\text {out }}$	500		800	$\mathrm{mVp}-\mathrm{p}$
Skew	Sw			300	ps
Bit Error Rate	BER			$5 \mathrm{E}-5$	
Input Logic Level High	$\mathrm{V}_{\text {IH }}$	2.0		$\mathrm{~V}_{\text {cc }}$	V
Input Logic Level Low	$\mathrm{V}_{\text {IL }}$	0		0.8	V
Output Logic Level High	$\mathrm{V}_{\text {oH }}$	$\mathrm{V}_{\text {cc }}-0.5$		$\mathrm{~V}_{\text {cc }}$	V
Output Logic Level Low	V_{oL}	0		0.4	V

Note:

1. Differential input voltage amplitude is measured between TxnP and TxnN.
2. Differential output voltage amplitude is measured between RxnP and RxnN .

Optical Characteristics

| Parameter | Symbol | Min | Typical | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitter | | | | | |
| Optical Wavelength | λc | per ITU-T 694.1 | | nm | |
| Center Wavelength Deviation (End of Life) | $\lambda \mathrm{d}$ | ± 100 | | pm | |
| Side-Mode Suppression Ratio | SMSR | 30 | | | dB |
| Average Launch Power | Pout | -5 | | 2 | dBm |
| Optical Modulation Amplitude | OMA | -2 | | | dBm |

Gigalsght
深圳市易飞扬通信技术有限公司
Shenzhen Gigalight Technology Co．，Ltd．
www．gigalight．com

Extinction Ratio	ER	7			dB
Average Launch Power of OFF Transmitter	Poff			-30	dB
Rin $_{20}$ OMA				-130	$\mathrm{~dB} / \mathrm{HZ}$
Optical return loss tolerance	ORL			20	dB
Receiver		λ_{c}	1260		1600
Center Wavelength	RSoma			-11.4	dBm
Receiver Sensitivity in OMA ${ }^{2}$	Pin 2	-27		-5	dBm
Average Power at Receiver Input（each lane）	R_{R}			-26	dB
Receiver Reflectance	LOS $_{\mathrm{A}}$	-30			dBm
LOS Assert	LOS $_{\mathrm{D}}$			-18	dBm
LOS De－Assert	LOS $_{\mathrm{H}}$	0.5			dB
LOS Hysteresis					

Note：

1． Hit Ratio $=5 \times 10^{-5}$
2．Unstressed receiver OMA sensitivity．

C－band λc Wavelength Grid

ITU Channel Product Code	Frequency（THz）	Wavelength	ITU Channel Product Code	Frequency（THz）	Wavelength
17	191.7	1563.86	40	194.0	1545.32
18	191.8	1563.05	41	194.1	1544.53
19	191.9	1562.23	42	194.2	1543.73
20	192.0	1561.42	43	194.3	1542.94
21	192.1	1560.61	44	194.4	1542.14
22	192.2	1559.79	45	194.5	1541.35
23	192.3	1558.98	46	194.6	1540.56
24	192.4	1558.17	47	194.7	1539.77
25	192.5	1557.36	48	194.8	1538.98
26	192.6	1556.55	49	194.9	1538.19
27	192.7	1555.75	50	195.0	1537.40
28	192.8	1554.94	51	195.1	1536.61
29	192.9	1554.13	52	195.2	1535.82

深圳市易飞扬通信技术有限公司
Shenzhen Gigalight Technology Co．，Ltd．

www．gigalight．com					
30	193.0	1553.33	53	195.3	1535.04
31	193.1	1552.52	54	195.4	1534.25
32	193.2	1551.72	55	195.5	1533.47
33	193.3	1550.92	56	195.6	1532.68
34	193.4	1550.12	57	195.7	1531.90
35	193.5	1549.32	58	195.8	1531.12
36	193.6	1548.51	59	195.9	1530.33
37	193.7	1547.72	60	196.0	1529.55
38	193.8	1546.92	61	196.1	1528.77
39	193.9	1546.12			

Table 1．Product ordering codes：the central wavelength is defined as per ITU－T 694.1

Pin Description

Pin	Logic	Symbol	Name／Description	Note
1		VeeT	Module Transmitter Ground	1
2	LVTTL－O	TX＿Fault	Module Transmitter Fault	2
3	LVTTL－I	TX＿Dis	Transmitter Disable；Turns off transmitter laser output	
4	LVTTL－I／O	SDA	2－Wire Serial Interface Data Line	
5	LVTTL－I	SCL	2－Wire Serial Interface Clock	2
6		MOD＿ABS	Module Definition，Grounded in the module	2
7	LVTTL－I	RSO	Receiver Rate Select	
8	LVTTL－O	RX＿LOS	Receiver Loss of Signal Indication Active LOW	
9	LVTTL－I	RS1	Transmitter Rate Select（not used）	1
10		VeeR	Module Receiver Ground	1
11		VeeR	Module Receiver Ground	
12	CML－O	RD－	Receiver Inverted Data Output	1
13	CML－O	RD＋	Receiver Data Output	
14		VeeR	Module Receiver Ground	1
15		VccR	Module Receiver 3．3 V Supply	
16		VccT	Module Receiver 3．3 V Supply	
17		VeeT	Module Transmitter Ground	

18	CML－I	TD＋	Transmitter Non－Inverted Data Input	
19	CML－I	TD－	Transmitter Inverted Data Input	
20		VeeT	Module Transmitter Ground	1

Note：

1．Module ground pins GND are isolated from the module case．
2．Shall be pulled up with $4.7 \mathrm{~K}-10 \mathrm{Kohms}$ to a voltage between 3.15 V and 3.45 V on the host board．

Figure 2．Electrical Pin－out Details

Tx＿Fault Pin

Tx＿Fault is a module output that when high，indicates that the module transmitter has detected a fault condition related to laser operation or safety．The Tx＿Fault output is an open drain／collector and shall be pulled up to the Vcc＿Host in the host with a resistor in the range $4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ ．

Tx＿Disable Pin

When Tx＿Disable is asserted high or left open，the SFP＋module transmitter output shall be turned off unless the module is a passive cable assembly．This contact shall be pulled up to VccT with a $4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ resistor in modules and cable assemblies．Tx＿Disable is a module input contact．

RS0／RS1 Pin

RS0 and RS1 are module inputs and are pulled low to VeeT with＞ $30 \mathrm{k} \Omega$ resistors in the module．RS0 optionally selects the optical receive signaling rate coverage．RS1 optionally selects the optical transmit signaling rate coverage．

Mod＿ABS Pin

Mod＿ABS is connected to VeeT or VeeR in the SFP＋module．The host may pull this contact up to Vcc＿Host with a resistor in the range $4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ ．Mod＿ABS is asserted＂High＂when the SFP＋module is physically absent from a host slot．In the SFP MSA（INF－8074i）this contact has the same function but is called

MOD＿DEF0．

Rx＿LOS Pin

Rx＿LOS when high indicates an optical signal level below that specified in the relevant standard．Rx＿LOS is an open drain／collector output，but may also be used as an input by supervisory circuitry in the module．For a nominally 3.3 V Vcc＿Host using a resistive pull up to Vcc＿Host the resistor value shall be in the range $4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ ．For a nominally 2.5 V Vcc＿Host using a resistive pull up to Vcc＿Host the resistor value shall be in the range $4.7 \mathrm{k} \Omega$ to $7.2 \mathrm{k} \Omega$ ．

Recommended Interface Circuit

Figure 3．Recommended Interface Circuit

Memory Organization

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2－wire serial interface（SCL，SDA）．

The memory map specific data field defines as following．

Figure 4．SFP28 Memory Map

Timing and Electrical

Parameter	Symbol	Min．	Max．	Unit	Conditions
Tx＿Disable assert time	t＿off		100	μs	Rising edge of Tx＿Disable to fall of output signal below 10% of nominal
Tx＿Disable negate time	t＿on		2	ms	Falling edge of Tx＿Disable to rise of output signal above 90\％of nominal．This only applies in normal operation，not during start up or fault recovery．
Time to initialize 2－wire interface	t＿2w＿start＿up		300	ms	From power on or hot plug after the supply meet－ ing Table 8．
Time to initialize	t＿start＿up		300	ms	From power supplies meeting Tables or hot plug or Tx disable negated during power up，or Tx＿Fault recovery，until non－cooled power level I
part（or non－cooled power level II part already					
enabled at power level II for Tx＿Fault recovery）is					
fully operational．					

Mechanical Dimensions

Figure 5．Mechanical Specifications

Regulatory Compliance

Gigalight GSS－Dxx280－LRT transceivers are Class 1 Laser Products．They are certified per the following standards：

Feature	Standard
Laser Safety	IEC 60825－1：2014（Third Edition）
Environmental protection	2011／65／EU
	EN55032：2015
CE EMC	EN55035：2017
	EN61000－3－2：2014
	EN61000－3－3：2013
FCC	FCC Part 15，Subpart B；ANSI C63．4－2014

References

1．SFP28 MSA
2．Ethernet IEEE802．3cc
3．Directive 2011／65／EU of the European Parliament and of the Council，＂on the restriction of the use of certain hazardous substances in electrical and electronic equipment，＂July 1， 2011.

\triangle CAUTION：

Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure．

Ordering Information

Part Number
GSS－Dxx280－LRT

Product Description

CPRI Option 10，25GE，32G FC，SFP28 DWDM， $10 \mathrm{~km},-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$ xx－DWDM Channel No（17～61）．

Important Notice

Performance figures，data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by Gigalight before they become applicable to any particular order or contract．In accordance with the Gigalight policy of continuous improvement specifications may change without notice．

The publication of information in this data sheet does not imply freedom from patent or other protective rights of Gigalight or others．Further details are available from any Gigalight sales representative．

E－mail：sales＠gigalight．com
Official Site：www．gigalight．com

Revision History

Revision	Date		Description
Vo	Sep－08－2020	Advance Release．	

