

Optical Network Transceiver Innovator

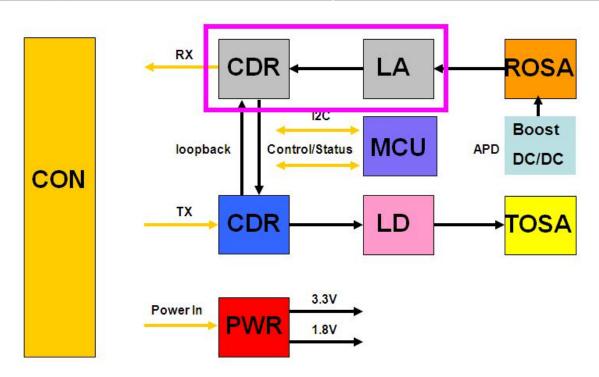
# 10G CWDM XFP 1350-1450nm 40km Optical Transceiver GXC-xx192-04C

# Features

- Uncooled CWDM DFB laser and a receiver with a APD photodiode
- XFP MSA Rev 4.5 Compliant
- Data rate from 9.95Gbps to 11.3Gbps
- link length up to 40km on SMF G652D
- Low Power Dissipation 2.5W Maximum
- XFI and lineside loopback Mode Supported
- -5°C to 70°C Operating Case Temperature
- Diagnostic Performance Monitoring of module temperature,
  Supply Voltages, laser bias current, transmit optical power, and receive optical power
- ◆ RoHS6 compliant (lead free) 💋

# Applications

- 10G Ethernet
- 10G Fibre Channel
- SONET OC-192 / SDH STM-64
- OTN OTU2e


# Description

Gigalight GXC-xx192-04C is compliant with the 10G Small Form-Factor Pluggable (XFP) Multi-Source Agreement (MSA), supporting data-rate of 10.3125Gbps(10GBASE-ER) or 9.953Gbps 10GBASE-EW), and transmission distance up to 40km on SMF G652D. The transceiver module comprises a transmitter with uncooled CWDM DFB laser and a receiver with a APD photodiode. Transmitter and receiver are separate within a wide temperature range of  $-5^{\circ}$ C to  $+70^{\circ}$ C and offers optimum heat dissipation and excellent electromagnetic shielding thus enabling high port densities for 10 GbE systems.





Optical Network Transceiver Innovator



# Figure1. Module Block Diagram

### **Absolute Maximum Ratings**

| Parameter                  | Symbol | Min  | Max | Unit |
|----------------------------|--------|------|-----|------|
| Maximum Supply Voltage Vcc | Vcc    | -0.5 | 4   | V    |
| Storage Temperature        | Tst    | -40  | 85  | °C   |
| Case Operating Temperature | Тор    | -5   | 70  | °C   |
| Relative Humidity          | RH     | 0    | 85  | 9⁄0  |
|                            |        |      |     |      |

# **Optical Characteristics**

| Parameter                               | Symbol | Min  | Тур      | Мах           | Unit          | Ref.     |
|-----------------------------------------|--------|------|----------|---------------|---------------|----------|
| Transmitter                             |        |      |          |               |               |          |
| Optical output Power                    | Po     | -3   |          | +3            | dBm           |          |
| Center Wavelength                       | λ      |      | λc       |               | nm            | 3        |
| Center wavelength stability             | Δλd    | -6.5 | λο       | 6.5           | nm            |          |
| Optical Extinction Ratio                | ER     | 3    |          |               | dB            | 1        |
| Side Mode Suppression Ratio             | SMSR   | 30   |          |               | dB            |          |
| Average Launch power of OFF transmitter | POFF   | -30  |          |               | dBm           |          |
| Tx Jitter                               | Txj    |      | Complian | t with each s | standard requ | irements |
| Receiver                                |        |      |          |               |               |          |



Optical Network Transceiver Innovat

| Receiver sensitivity (max) in OMA | Rsen |      | -18  | dBm | 2 |
|-----------------------------------|------|------|------|-----|---|
| Overload (Average Power)          | Pavg |      | -1   | dBm |   |
| Optical Center Wavelength         | λC   | 1260 | 1600 | nm  |   |
| LOS De-Assert                     | LOSD |      | -22  | dBm |   |
| LOS Assert                        | LOSA | -35  |      | dBm |   |
| LOS Hysteresis                    |      | 0.5  |      | dB  |   |

Notes:

1. PRBS 2<sup>31</sup>-1 test pattern @10.3125Gbps.

2. PRBS 2<sup>31</sup>-1 test pattern @10.3125Gbps, BER≤10<sup>-12</sup>.

3. ITU-T G.694.2 CWDM wavelength from 1470nm to 1610nm, each step 20nm.

All specifications are based on G.652.D transmission fiber

### **Electrical Characteristics**

| Parameter                                             | Symbol                 | Min       | Тур | Max                 | Unit | Note |
|-------------------------------------------------------|------------------------|-----------|-----|---------------------|------|------|
| Power Supply Voltage                                  | Vcc                    | 3.13      | 3.3 | 3.47                | V    |      |
| Supply current                                        | lcc                    | -         | -   | 550                 | mA   |      |
| Module total power                                    | Р                      |           |     | 2                   | W    |      |
| Transmitter                                           |                        |           |     |                     |      |      |
| Input differential impedance                          | Rin                    |           | 100 |                     | Ω    | 1    |
| Differential data input swing                         | Vin,pp                 | 200       |     | 1800                | mV   |      |
| Transmit Disable Voltage                              | VD                     | Vcc-0.8   |     | Vcc                 | V    |      |
| Transmit Enable Voltage                               | Ven                    | GND       |     | GND+0.8             | V    |      |
| Transmit Disable Assert Time                          |                        |           |     | 10                  | us   |      |
| Receiver                                              |                        |           |     |                     |      |      |
| Differential data output swing                        | Vout,pp                | 300       |     | 850                 | mV   |      |
| Data output rise time                                 | tr                     |           |     | 58                  | ps   | 2    |
| Data output fall time                                 | t <sub>f</sub>         |           |     | 58                  | ps   | 2    |
| LOS Fault                                             | V <sub>LOS fault</sub> | Vcc - 0.8 |     | Vcc <sub>HOST</sub> | V    | 3    |
| LOS Normal                                            | V <sub>LOS norm</sub>  | GND       |     | GND+0.5             | V    | 3    |
| Power Supply Rejection      PSR      See Note 4 below |                        |           |     |                     | 4    |      |

Notes:

1. After internal AC coupling.

2. 20 - 80 %

Loss of Signal is open collector to be pulled up with a 4.7k – 10kohm resistor to 3.15 – 3.6V. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

4. Per Section 2.7.1. in the XFP MSA Specification.



Optical Network Transceiver Innovator

# **Digital Diagnostic Functions**

| Parameter                  | Symbol    | Min. | Мах | Unit | Notes                    |  |
|----------------------------|-----------|------|-----|------|--------------------------|--|
| Accuracy                   |           |      |     |      |                          |  |
| Transceiver Temperature    | DMI_Temp  | -5   | +5  | degC | 1                        |  |
| TX Output optical power    | DMI_TX    | -2   | +2  | dB   |                          |  |
| RX Input optical power     | DMI_RX    | -2   | +2  | dB   | -6dBm to<br>-20dBm range |  |
| Transceiver Supply voltage | DMI_VCC   | -3%  | +3% | V    | Full operating range     |  |
| Bias current monitor       | DMI_lbias | -10% | 10% | mA   | 2                        |  |
| Dynamic Range Accuracy     |           |      |     |      |                          |  |
| Transceiver Temperature    | DMI_Temp  | -5   | 70  | degC |                          |  |
| TX Output optical power    | DMI_TX    | -1   | +2  | dBm  |                          |  |
| RX Input optical power     | DMI_RX    | -18  | 0   | dBm  |                          |  |
| Transceiver Supply voltage | DMI_VCC   | 3.0  | 3.6 | V    |                          |  |
| Bias current monitor       | DMI_lbias | 0    | 100 | mA   |                          |  |

Notes:

1. Internally measured

2. Accuracy of measured Tx bias current is 10% of the actual bias current from the laser driver to the laser.

# **Pin Descriptions**

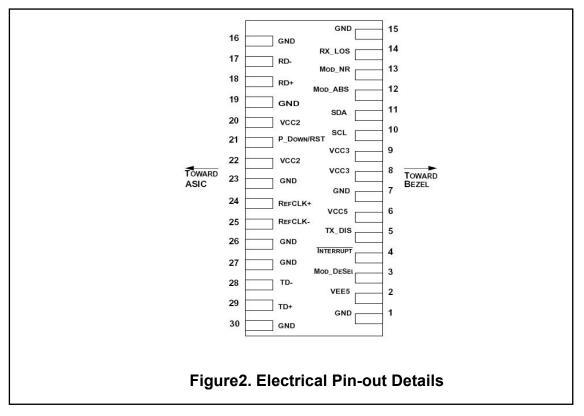
| Pin | Logic      | Symbol    | Name/Description                                                                                                 | Ref. |
|-----|------------|-----------|------------------------------------------------------------------------------------------------------------------|------|
| 1   |            | GND       | Module Ground                                                                                                    | 1    |
| 2   |            | VEE5      | Optional –5.2 Power Supply                                                                                       | 4    |
| 3   | LVTTL-I    | Mod-Desel | Module De-select; When held low allows the module to , respond to<br>2-wire serial interface commands            |      |
| 4   | LVTTL-O    | Interrupt | Interrupt (bar); Indicates presence of an important condition which can be read over the serial 2-wire interface | 2    |
| 5   | LVTTL-I    | TX_DIS    | Transmitter Disable; Transmitter laser source turned off                                                         |      |
| 6   |            | VCC5      | +5 Power Supply                                                                                                  | 4    |
| 7   |            | GND       | Module Ground                                                                                                    | 1    |
| 8   |            | VCC3      | +3.3V Power Supply                                                                                               |      |
| 9   |            | VCC3      | +3.3V Power Supply                                                                                               |      |
| 10  | LVTTL-I    | SCL       | Serial 2-wire interface clock                                                                                    | 2    |
| 11  | LVTTL- I/O | SDA       | Serial 2-wire interface data line                                                                                | 2    |
| 12  | LVTTL-O    | Mod_Abs   | Module Absent; Indicates module is not present. Grounded in the module.                                          | 2    |
| 13  | LVTTL-O    | Mod_NR    | Module Not Ready;                                                                                                | 2    |
| 14  | LVTTL-O    | RX_LOS    | Receiver Loss of Signal indicator                                                                                | 2    |
| 15  |            | GND       | Module Ground                                                                                                    | 1    |



Http:// www.gigalight.com.cn

#### Optical Network Transceiver Innovator

| 16 |           | GND       | Module Ground                                                                                                                         | 1 |
|----|-----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|---|
| 17 | CML-O     | RD-       | Receiver inverted data output                                                                                                         |   |
| 18 | CML-O     | RD+       | Receiver non-inverted data output                                                                                                     |   |
| 19 |           | GND       | Module Ground                                                                                                                         | 1 |
| 20 |           | VCC2      | +1.8V Power Supply                                                                                                                    | 4 |
| 21 | I VTTI -I | P_Down/RS | Power Down; When high, places the module in the low power stand-by<br>mode and on the falling edge of P_Down initiates a module reset |   |
| 21 |           | Т         | Reset; The falling edge initiates a complete reset of the module including the 2-wire serial interface, equivalent to a power cycle.  |   |
| 22 |           | VCC2      | +1.8V Power Supply                                                                                                                    | 4 |
| 23 |           | GND       | Module Ground                                                                                                                         | 1 |
| 24 | PECL-I    | RefCLK+   | Reference Clock non-inverted input, AC coupled on the host board                                                                      | 3 |
| 25 | PECL-I    | RefCLK-   | Reference Clock inverted input, AC coupled on the host board                                                                          | 3 |
| 26 |           | GND       | Module Ground                                                                                                                         | 1 |
| 27 |           | GND       | Module Ground                                                                                                                         | 1 |
| 28 | CML-I     | TD-       | Transmitter inverted data input                                                                                                       |   |
| 29 | CML-I     | TD+       | Transmitter non-inverted data input                                                                                                   |   |
| 30 |           | GND       | Module Ground                                                                                                                         | 1 |


#### Notes:

1. Module circuit ground is isolated from module chassis ground within the module.

2. Open collector; should be pulled up with 4.7k - 10k ohms on host board to a voltage between 3.15Vand 3.6V.

3. Reference Clock input is not required.

4.Not required





Optical Network Transceiver Innovator

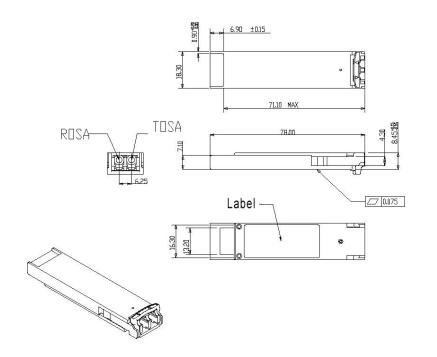



Figure3. Mechanical Specifications



Optical Network Transceiver Innovator

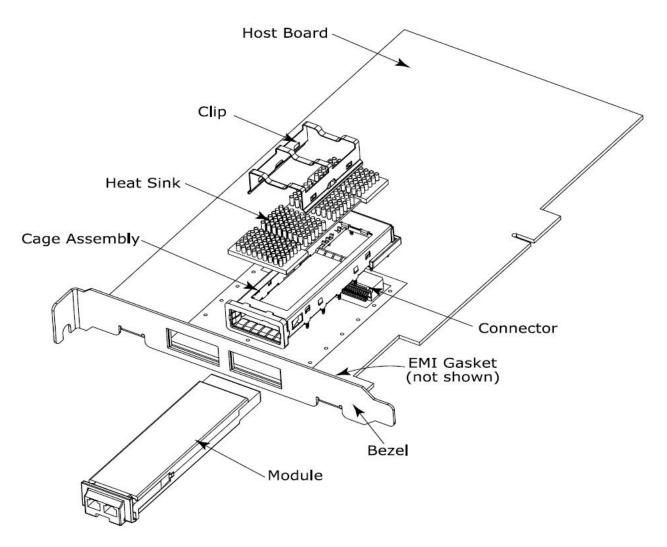



Figure4. XFP Mechanical Components

# The mechanical components defined:

- 1. The module, clip and connector dimensions are constant for all applications. While the bezel, cage assembly, EMI gasket and heat sink can be designed and/or adjusted for the individual application.
- 2. The relatively small form factor of the XFP module combined with an adaptable heatsink option allows host system design optimization of module location, heatsink shape/dimension/fins design, and airflow control. The module can be inserted and removed from the cage with the heat sink and clip attached.

# **Regulatory Compliance**

GIGALIGHT XFP transceiver is designed to be Class I Laser safety compliant and is certified per the following standards:



Http:// www.gigalight.com.cn

Optical Network Transceiver Innovator

| Feature                  | Agency | Standard                                            | Certificate /<br>Comments |
|--------------------------|--------|-----------------------------------------------------|---------------------------|
| Laser Safety             | FDA    | CDRH 21 CFR 1040 and Laser Notice No.<br>50         | 1120288-000               |
| Product Safety           | UL     | UL and CUL EN60950-2:2007                           | E347511                   |
| Environmental protection | SGS    | RoHS Directive 2002/95/EC                           | GZ1001008706/CHEM         |
| EMC                      | WALTEK | EN 55022:2006+A1:2007<br>EN 55024:1998+A1+A2:2003 - | WT10093768-D-E-E          |

# **Ordering information**

| Part Number   | Product Description                                                     |  |  |  |  |
|---------------|-------------------------------------------------------------------------|--|--|--|--|
| GXC-xx192-04C | CWDM XFP, 11.3Gb/s, 1350-1450nm with 20nm Spacing, 40km, SMF, Duplex LC |  |  |  |  |
| GAC-XX192-04C | xx=35, 37, 39, 41, 43, 45                                               |  |  |  |  |

# References

- 1. 10 Gigabit Small Form Factor Pluggable Module (XFP) Multi-Source Agreement (MSA), Rev 4.5 August 2005.
- 2. IEEE802.3ae 2002
- 3. ITU-T G.709 / ITU-T G.959.1
- 4. Telcordia GR-253-CORE

# **Important Notice**

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

- E-mail: <u>sales@gigalight.com</u>
- Web : <u>http://www.gigalight.com/</u>